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1. Introduction

An intriguing extension of the classical metric space idea is partially E-cone
spaces. The origin of E-cone metric spaces is defining the metric using a partic-
ular cone in Banach space [15]. This structure provides non-negative scalar that
supports the determination of distance in a reacher context more effectively than
using a real number alone [4, 6, 19, 31, 33, 34, 35, 37, 38].

In the study of metric geometry, partially E-cone metric spaces(see [18]) which
combine the partial ordering and the element of cone metric spaces represent an
exciting advance. Introduced as a generalization of metric spaces in which distance
is measured inside a cone in the Banach space [15] rather than in the standard
set of non-negative real numbers, these spaces provide an additional mathematical
extension. The key feature of partially E-cone metric spaces is their capacity to
integrate an order relation into the structure of cone metric spaces. Compared
to conventional metric spaces, this novel method offers more versatility and wider
applicability.

Metric spaces are a useful idea in topology and mathematical analysis because
they provide a structural framework for defining continuity and distance. This
opens up new possibilities, especially in fields where order relationships are im-
portant, such theoretical economics and fixed point theory. One might consult
the work of Kadalburg, Radenovic, and Rakocevic, who offer thorough studies in
this field, especially in their paper ”Revisiting cone metric spaces and fixed point
theorem of contractive mapping” [5, 20, 21, 25] and the references therein, for a
foundational discussion on E-cone metric spaces.

Recently, there has been additional investigation on partially E-cone metric
spaces with the aim of strengthening their theoretical basis and expanding their
practical scope. These spaces are an advanced version of metric spaces that es-
tablish distance by using a partial ordering in conjunction with a cone inside of
a Banach space [15]. These frameworks integrate ordering structures, which are
essential for mathematical models including optimization and hierarchy sensitive
processes, in addition to enriching the traditional concepts of distance and con-
version. The work of Aydi and Karapinar [9], whose authors created fixed point
theorems that are fundamental to mathematical analysis and algorithms in such
structured space, provides a current thorough assessment and advancement in this
topic.

Applications of the Banach Fixed point theorem are widely recognized. Numer-
ous scholars have expanded upon this theorem by incorporating broader contractive
conditions that necessitate the presence of a fixed point. Nieto and Lopez [30] later
studied the existence of fixed points in ordered metric spaces, after Ran and Reur-
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ings [32] in 2004. Regarding additional outcomes in ordered metric spaces, see e.g.
[3, 8, 13, 26, 27-29]. Bhashkar and Lakshmikantham [17] explored several coupled
Fixed point theorems in partially ordered complete metric spaces and established
the idea of a coupled Fixed point of a mapping F : X × X → X. Subsequently,
different outcomes regarding coupled fixed points were discovered, see e.g. [2, 10,
13, 14, 22, 23, 24, 29, 30]. On the other hand, tripled fixed point theory was first
presented by Berinde and Borcut. [16] (see also the papers [1, 11]).

In this paper we define the concept of triple fixed point on E-cone metric space.

2. Preliminaries

Definition 2.1. [7] Let ξ ̸= ϕ and consider an ordered space E over the real
scalars. An E-valued function dE : ξ × ξ → E such that for all ℏ, ϑ, ϱ ∈ ξ, then

(i) 0E ≤ dE(ℏ, ϑ), dE(ℏ, ϑ) = 0E if and only if ℏ = ϑ;

(ii) dE(ℏ, ϑ) = dE(ϑ, ℏ);

(iii) dE(ℏ, ϑ) ≤ dE(ℏ, ϱ) + dE(ϱ, ϑ).

Then the pair (ξ, dE) is called E-metric space.

Definition 2.2. [18] Let ξ ̸= ϕ and consider an ordered space E over the real
scalars ordered by its positive cone with the assumption that (E+)⊘ ̸= ϕ. A function
pE : ξ × ξ → E+ such that for all ℏ, ϑ, ϱ ∈ ξ;

(ρ1) : 0E ≤ pE(ℏ, ℏ) ≤ pE(ℏ, ϑ).

(ρ2) : ℏ = ϑ if and only if pE(ℏ, ℏ) = pE(ℏ, ϑ)’

(ρ3) : p
E(ℏ, ϑ) = pE(ϑ, ℏ),

(ρ4) : p
E(ℏ, ϑ) ≤ pE(ℏ, ϱ) + pE(ℏ, ϑ)− pE(ϱ, ϱ).

A pair (ξ, pE) is known as partially E-cone metric space where ξ ̸= ϕ and pE is a
partially E-cone metric on the set ξ.

Clearly, if pE(ℏ, ϑ) = 0E, then from (ρ1) and (ρ2), ℏ = ϑ. But if ℏ = ϑ, pE(ℏ, ϑ)
may not be equal to 0E.

Definition 2.3. [18] Consider a partially E-cone metric (ξ, pE) and let E be an
ordered space with the assumption that (E+)⊘ ̸= ϕ. Consider a sequence {ℏn} in ξ
and ℏ ∈ ξ. Then
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(i) If for every 0E ≪ e, then, there exists a natural number a such that

pE(ℏn, ℏ) ≪ e, for all n ≥ a.

Therefore, the sequence {ℏn} is called e-convergent to ℏ.
Here, however, we write lim

n→∞
ℏn = ℏ or ℏn

e−→ ℏ.

(ii) If for every 0E ≪ e, then, there exists a natural number a such that

pE(ℏn, ℏm) ≪ e, for all n,m ≥ a.

Therefore, the sequence {ℏn} is called e-Cauchy sequence.

(iii) (ξ, pE) is e-complete if every e-Cauchy sequence is e-convergent.

Definition 2.4. [12] Consider a partially ordered set (ξ,≤) and ℑ : ξ× ξ× ξ → ξ.
If for any ℏ, ϑ, ϱ ∈ ξ

ℏ1, ℏ2 ∈ ξ, ℏ1 ≤ ℏ2 ⇒ ℑ(ℏ1, ϑ, ϱ) ≤ ℑ(ℏ2, ϑ, ϱ),
ϑ1, ϑ2 ∈ ξ, ϑ1 ≤ ϑ2 ⇒ ℑ(ℏ, ϑ1, ϱ) ≥ ℑ(ℏ, ϑ2, ϱ),

ϱ1, ϱ2 ∈ ξ, ϱ1 ≤ ϱ2 ⇒ ℑ(ℏ, ϑ, ϱ1) ≤ ℑ(ℏ, ϑ, ϱ2).

Then, the mapping ℑ possesses the mixed monotone property.

Definition 2.5. [12] Let ℑ : ξ × ξ × ξ → ξ be the mapping. An element
(ℏ, ϑ, ϱ), ∀ ℏ, ϑ, ϱ ∈ ξ is known as a tripled fixed point of ℑ if

ℑ(ℏ, ϑ, ϱ) = ℏ, ℑ(ϑ, ℏ, ϑ) = ϑ and ℑ(ϱ, ϑ, ℏ) = ϱ.

Berinde and Borcut additionally demonstrated the result specified below.

Theorem 2.1. [12] Consider a partially ordered set (ξ,≤, pE) and assume that
there is an E-cone metric space pE on ξ such that (ξ, pE) is a complete E-cone
metric space. Consider the mapping ℑ : ξ × ξ × ξ → ξ such that ℑ possesses the
mixed monotone property and there are i, j, k ≥ 0 with i+ j + k < 1 such that

pE
(
ℑ(ℏ, ϑ, ϱ),ℑ(ℏ′, ϑ′, ϱ′)

)
≤ ipE(ℏ, ℏ′) + jpE(ϑ, ϑ′) + kpE(ϱ, ϱ′), (2.1)

for any ℏ, ϑ, ϱ ∈ ξ for which ℏ ≤ ℏ′, ϑ ≥ ϑ′, ϱ ≤ ϱ. Consider ℑ is continuous or ξ
has the following property:

(i) if a non-decreasing sequence ℏn → ℏ, then ℏn ≤ ℏ ∀ n,



Tripled Fixed Points in Complete E-Cone Metric Spaces 257

(ii) if a non-increasing sequence ϑn → ϑ, then ϑn ≥ ϑ ∀ n.

If ∃ ℏ0, ϑ0, ϱ0 ∈ ξ such that ℏ0 ≤ ℑ(ℏ0, ϑ0, ϱ0), ϑ0 ≥ ℑ(ϑ0, ℏ0, ϑ0) and ϱ0 ≤
ℑ(ϱ0, ϑ0, ℏ0), then there exist ℏ, ϑ, ϱ ∈ ξ such that

ℑ(ℏ, ϑ, ϱ) = ℏ, ℑ(ϑ, ℏ, ϑ) = ϑ and ℑ(ϱ, ϑ, ℏ) = ϱ,

then, ℑ has a triple fixed point.

A few triple fixed point theorems for partially E-Cone metric space mappings
with mixed monotone properties are presented in this study.

3. Main Results

Definition 3.1. Consider a partial E-cone metric space (ξ, pE). A mapping ℘ :
ξ × ξ is called ICS if ℘ is continuous, injective and has the property: for every
sequence {ℏn} in ξ, if {℘ℏn} is convergent then {ℏn} is also convergent.

Let φ be the set of ψ : [0,+∞) → [0,+∞) such that

(1) ψ is non-decreasing,

(2) ψ(ı) < ı for all ı > 0,

(3) lim
ȷ→ı+

ψ(ȷ) < ı for all ı > 0.

Theorem 3.1. Consider a partially ordered set (ξ,≤) and assume that there is
an E-cone metric pE on ξ such that (ξ, pE) is a complete E-cone metric space.
Consider ℘ : ξ× ξ is an ICS mapping and ℑ : ξ× ξ× ξ → ξ is such that ℑ has the
mixed monotone property. Suppose there exists ψ ∈ φ such that

pE
(
℘ℑ(ℏ, ϑ, ϱ), ℘ℑ(ℏ′, ϑ′, ϱ′)

)
≤ ψ

(
max

{
pE(℘ℏ, ℘ℏ′), pE(℘ϑ, ℘ϑ′), pE(℘ϱ, ℘ϱ′)

})
(3.1)

for any ℏ, ϑ, ϱ ∈ ξ for which ℏ ≤ ℏ′, ϑ ≥ ϑ′ and ϱ ≤ ϱ′. Suppose

(i) ℑ is continuous, or

(ii) ξ has the following property:

(a) if non-decreasing sequence ℏn → ℏ (correspondingly ϱn → ϱ), then ℏn ≤
ℏ (correspondingly ϱn ≤ ϱ) for all n,

(b) if non-increasing sequence ϑn → ϑ, then ϑn ≥ ϑ for all n.
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If ∃ ℏ0, ϑ0, ϱ0 ∈ ξ such that ℏ0 ≤ ℑ(ℏ0, ϑ0, ϱ0), ϑ0 ≥ ℑ(ϑ0, ℏ0, ϑ0) and ϱ0 ≤
ℑ(ϱ0, ϑ0, ℏ0), then ∃ ℏ, ϑ, ϱ ∈ ξ such that

ℑ(ℏ, ϑ, ϱ) = ℏ, ℑ(ϑ, ℏ, ϑ) = ϑ and ℑ(ϱ, ϑ, ℏ) = ϱ,

then, ℑ has a triple fixed point.
Proof. Consider ℏ0, ϑ0, ϱ0 ∈ ξ such that ℏ0 ≤ ℑ(ℏ0, ϑ0, ϱ0), ϑ0 ≥ ℑ(ϑ0, ℏ0, ϑ0)
and ϱ0 ≤ ℑ(ϱ0, ϑ0, ℏ0). Set

ℏ1 = ℑ(ℏ0, ϑ0, ϱ0), ϑ1 = ℑ(ϑ0, ℏ0, ϑ0) and ϱ1 = ℑ(ϱ0, ϑ0, ℏ0). (3.2)

Continuing this process, we can construct sequences {ℏn}, {ϑn} and {ϱn} in ξ such
that

ℏn+1 = ℑ(ℏn, ϑn, ϱn), ϑn+1 = ℑ(ϑn, ℏn, ϑn) and ϱn+1 = ℑ(ϱn, ϑn, ℏn). (3.3)

Since ℑ possesses the mixed monotone property, by using a mathematical induc-
tion, we get

ℏn ≤ ℏn+1, ϑn ≥ ϑn+1, ϱn ≤ ϱn+1, for n = 0, 1, 2, ... (3.4)

Suppose for n ∈ N,

ℏn = ℏn+1, ϑn = ϑn+1, and ϱn = ϱn+1

then, by (3.3), a triple fixed point of ℑ is (ℏn, ϑn, ϱn). For any n ∈ N such that

ℏn ̸= ℏn+1 or ϑn ̸= ϑn+1 or ϱn ̸= ϑn+1. (3.5)

As ℘ is injective, then, for any n ∈ N, by (3.5)

0 < max
{
pE(℘ℏn, ℘ℏn+1), p

E(℘ϑn, ℘ϑn+1), p
E(℘ϱn, ℘ϱn+1)

}
.

By (3.1) and (3.3), we obtain

pE(℘ℏn, ℘ℏn+1) = pE
(
℘ℑ(ℏn−1, ϑn−1, ϱn−1), ℘ℑ(ℏn, ϑn, ϱn)

)
≤ ψ

(
max

{
pE(℘ℏn−1, ℘ℏn), pE(℘ϑn−1, ℘ϑn), p

E(℘ϱn−1, ℘ϱn)
})
(3.6)
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pE(℘ϑn+1, ℘ϑn) = pE
(
℘ℑ(ϑn, ℏn, ϑn), ℘ℑ(ϑn−1, ℏn−1, ϑn−1)

)
≤ ψ

({
pE(℘ϑn−1, ℘ϑn), p

E(℘ℏn−1, ℘ℏn), pE(℘ϑn−1, ℘ϑn)
})

= ψ
(
max

{
pE(℘ϑn−1, ℘ϑn), p

E(℘ℏn−1, ℘ℏn)
})

≤ ψ
(
max

{
pE(℘ϱn−1, ℘ϱn), p

E(℘ϑn−1, ℘ϑn), p
E(℘ℏn−1, ℘ℏn)

})
(3.7)

and

pE(℘ϱn, ℘ϱn+1) = pE
(
℘ℑ(ϱn−1, ϑn−1, ℏn−1), ℘ℑ(ϱn, ϑn, ℏn)

)
≤ ψ

(
max

{
pE(℘ϱn−1, ℘ϱn), p

E(℘ϑn−1, ℘ϑn), p
E(℘ℏn−1, ℘ℏn)

})
.

(3.8)

Since ψ(ı) < ı for all ı > 0, so from (3.6) to (3.8) we obtain that

0 < max
{
pE(℘ℏn, ℘ℏn+1), p

E(℘ϑn, ℘ϑn+1), p
E(℘ϱn, ℘ϱn+1)

}
≤ ψ

(
max

{
pE(℘ϱn−1, ℘ϱn), p

E(℘ϑn−1, ℘ϑn), p
E(℘ℏn−1, ℘ℏn)

})
< max

{
pE(℘ϱn−1, ℘ϱn), p

E(℘ϑn−1, ℘ϑn), p
E(℘ℏn−1, ℘ℏn)

}
.

(3.9)

Then

max
{
pE(℘ℏn, ℘ℏn+1), p

E(℘ϑn, ℘ϑn+1), p
E(℘ϱn, ℘ϱn+1)

}
< max

{
pE(℘ϱn−1, ℘ϱn), p

E(℘ϑn−1, ℘ϑn), p
E(℘ℏn−1, ℘ℏn)

}
.

Therefore,
{
max

{
pE(℘ℏn, ℘ℏn+1), p

E(℘ϑn, ℘ϑn+1), p
E(℘ϱn, ℘ϱn+1)

}}
is a positive

decreasing sequence. Thus, ∃ a ≥ 0 such that

lim
n→+∞

max
{
pE(℘ℏn, ℘ℏn+1), p

E(℘ϑn, ℘ϑn+1), p
E(℘ϱn, ℘ϱn+1)

}
= a.

Consider a > 0. By applying n→ +∞ in (3.9), we have

0 < a ≤ lim
n→+∞

ψ
(
max

{
pE(℘ϱn−1, ℘ϱn), p

E(℘ϑn−1, ℘ϑn), p
E(℘ℏn−1, ℘ℏn)

})
= lim

ı→ȷ+
ψ(ı) < a, (3.10)

which is a contradiction. Thus, we conclude that

lim
n→+∞

max
{
pE(℘ℏn, ℘ℏn+1), p

E(℘ϑn, ℘ϑn+1), p
E(℘ϱn, ℘ϱn+1)

}
= 0 (3.11)
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We claim that {℘ℏn}, {℘ϑn} and {℘ϱn} are Cauchy sequences. Suppose, to the
contrary, that the sequence {℘ℏn}, {℘ϑn}, or {℘ϱn} is not Cauchy. Then,

lim
n,m→+∞

pE(℘ℏm, ℘ℏn) ̸= 0, or lim
n,m→+∞

pE(℘ϑm, ℘ϑn) ̸= 0,

or lim
n,m→+∞

pE(℘ϱm, ℘ϱn) ̸= 0.

This implies that ∃ ε > 0 for which we can determine the subsequences of integers
(mq) and (nq) with nq > mq > q such that

max
{
pE(℘ℏmq , ℘ℏnq), p

E(℘ϑmq , ℘ϑnq), p
E(℘ϱmq , ℘ϱnq)

}
≥ ε. (3.12)

Moreover, according to mq we can choose the smallest integer nq such that nq > mq

and satisfying (3.12). Then

max
{
pE(℘ℏmq , ℘ℏnq−1), p

E(℘ϑmq , ℘ϑnq−1), p
E(℘ϱmq , ℘ϱnq−1)

}
< ε. (3.13)

By triangle inequality and (3.13), we have

pE(℘ℏmq , ℘ℏnq) ≤ pE(℘ℏmq , ℘ℏnq−1) + pE(℘ℏnq−1, ℘ℏnq)

< ε+ pE(℘ℏnq−1, ℘ℏnq).

Thus, by (3.11), we obtain

lim
q→+∞

pE(℘ℏmq , ℘ℏnq) ≤ lim
q→+∞

pE(℘ℏmq , ℘ℏnq−1) ≤ ε. (3.14)

Similarly, we have

lim
q→+∞

pE(℘ϑmq , ℘ϑnq) ≤ lim
q→+∞

pE(℘ϑmq , ℘ϑnq−1) ≤ ε. (3.15)

lim
q→+∞

pE(℘ϱmq , ℘ϱnq) ≤ lim
q→+∞

pE(℘ϱmq , ℘ϱnq−1) ≤ ε. (3.16)

Again by (3.13)

pE(℘ℏmq , ℘ℏnq) ≤ pE(℘ℏmq , ℘ℏmq−1) + pE(℘ℏmq−1, ℘ℏnq−1) + pE(℘ℏnq−1, ℘ℏnq)

≤ pE(℘ℏmq , ℘ℏmq−1) + pE(℘ℏmq−1, ℘ℏmq) + pE(℘ℏmq , ℘ℏnq−1)

+ pE(℘ℏnq−1, ℘ℏnq)

< pE(℘ℏmq , ℘ℏmq−1) + pE(℘ℏmq−1, ℘ℏmq) + ε+ pE(℘ℏnq−1, ℘ℏnq).
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Taking q → +∞ and by (3.11), we obtain

lim
q→+∞

pE(℘ℏmq , ℘ℏnq) ≤ lim
q→+∞

pE(℘ℏmq−1, ℘ℏnq−1) ≤ ε. (3.17)

lim
q→+∞

pE(℘ϑmq , ℘ϑnq) ≤ lim
q→+∞

pE(℘ϑmq−1, ℘ϑnq−1) ≤ ε. (3.18)

lim
q→+∞

pE(℘ϱmq , ℘ϱnq) ≤ lim
q→+∞

pE(℘ϱmq−1, ℘ϱnq−1) ≤ ε. (3.19)

Using (3.12) and (3.17 to 3.19), we have

lim
q→+∞

max
{
pE(℘ℏmq , ℘ℏnq), p

E(℘ϑmq , ℘ϑnq), p
E(℘ϱmq , ℘ϱnq)

}
= lim

q→+∞
max

{
pE(℘ℏmq−1, ℘ℏnq−1), p

E(℘ϑmq−1, ℘ϑnq−1), p
E(℘ϱmq−1, ℘ϱnq−1)

}
= ε.

(3.20)

By using the inequality (3.1), we have

pE(℘ℏmq , ℘ℏnq) = pE
(
℘ℑ(ℏmq−1, ϑmq−1, ϱmq−1)℘ℑ(ℏnq−1, ϑnq−1, ϱnq−1)

)
≤ ψ

(
max

{
pE(℘ℏmq−1, ℘ℏnq−1), p

E(℘ϑmq−1, ℘ϑnq−1), p
E(℘ϱmq−1, ℘ϱnq−1)

}) (3.21)

pE(℘ϑmq , ℘ϑnq) = pE
(
℘ℑ(ϑmq−1, ℏmq−1, ϑmq−1), ℘ℑ(ϑnq−1, ℏnq−1, ϱnq−1)

)
≤ ψ

(
max

{
pE(℘ϑmq−1, ℘ϑnq−1), p

E(℘ℏmq−1, ℘ℏnq−1)
}) (3.22)

And

pE(℘ϱmq , ℘ϱnq) = pE
(
℘ℑ(ϱmq−1, ϑmq−1, ℏmq−1), ℘ℑ(ϱnq−1, ϑnq−1, ℏnq−1)

)
≤ ψ

(
max

{
pE(℘ℏmq−1, ℘ℏnq−1), p

E(℘ϑmq−1, ℘ϑnq−1), p
E(℘ϱmq−1, ℘ϱnq−1)

}) (3.23)

From (3.21, 3.22 and 3.23), we deduce that

max
{
pE(℘ℏmq , ℘ℏnq), p

E(℘ϑmq , ℘ϑnq), p
E(℘ϱmq , ℘ϱnq)

}
≤ ψ

(
max

{
pE(℘ℏmq−1, ℘ℏnq−1), p

E(℘ϑmq−1, ℘ϑnq−1), p
E(℘ϱmq−1, ℘ϱnq−1)

}) (3.24)

Taking q → +∞ in (3.24) and from (3.20), we get

0 < ε ≤ lim
ı→ε+

ψ(ı) < ε,

which is a contradiction. Hence, {℘ℏn}, {℘ϑn} and {℘ϱn} are Cauchy sequences
in (ξ, pE). {℘ℏn}, {℘ϑn} and {℘ϱn} are convergent sequences, as ξ is a complete
E-cone metric space.
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Since ℘ is an ICS mapping, ∃ ℏ, ϑ, ϱ ∈ ξ such that

lim
n→+∞

ℏn = ℏ, lim
n→+∞

ϑn = ϑ, and lim
n→+∞

ϱn = ϱ. (3.25)

Since T is continuous, we have

lim
n→+∞

℘ℏn = ℘ℏ, lim
n→+∞

℘ϑn = ℘ϑ, and lim
n→+∞

℘ϱn = ℘ϱ. (3.26)

Now, consider (i) holds, that is ℑ is continuous. Then from (3.3), (3.25) and (3.26),
we get

ℏ = lim
n→+∞

ℏn+1 = lim
n→+∞

ℑ(ℏn, ϑn, ϱn) = ℑ( lim
n→+∞

ℏn, lim
n→+∞

ϑn, lim
n→+∞

ϱn) = ℑ(ℏ, ϑ, ϱ),

ϑ = lim
n→+∞

ϑn+1 = lim
n→+∞

ℑ(ϑn, ℏn, ϑn) = ℑ( lim
n→+∞

ϑn, lim
n→+∞

ℏn, lim
n→+∞

ϑn) = ℑ(ϑ, ℏ, ϑ),

and

ϱ = lim
n→+∞

ϱn+1 = lim
n→+∞

ℑ(ϱn, ϑn, ℏn) = ℑ( lim
n→+∞

ϱn, lim
n→+∞

ϑn, lim
n→+∞

ℏn) = ℑ(ϱ, ϑ, ℏ),

to proved that ℑ has a triple fixed point.
Consider (ii) holds. Since {ℏn}, {ϱn} are non-decreasing with ℏn → ℏ, ϱn → ϱ

and {ϑn} is also non-increasing with ϑn → ϑ, then by (ii) we obtain

ℏn ≤ ℏ, ϑn ≥ ϑ and ϱn ≤ ϱ, for all n.

Consider now

pE
(
℘ℏ, ℘ℑ(ℏ, ϑ, ϱ)

)
≤ pE(℘ℏ, ℘ℏn+1) + pE

(
℘ℏn+1, ℘ℑ(ℏ, ϑ, ϱ)

)
= pE(℘ℏ, ℘ℏn+1) + pE

(
℘ℑ(ℏn, ϑn, ϱn), ℘ℑ(ℏ, ϑ, ϱ)

)
≤ pE(℘ℏ, ℘ℏn+1) + ψ

(
max

{
pE(℘ℏn, ℘ℏ), pE(℘ϑn, ℘ϑ), p

E(℘ϱn, ℘ϱ)
})
.

(3.27)

Letting n → +∞ and by using (3.26), the right-hand side of (3.27) tends to 0,
thus we obtain pE

(
℘ℏ, ℘ℑ(ℏ, ϑ, ϱ)

)
= 0. Therefore, ℘ℏ = ℘ℑ(ℏ, ϑ, ϱ) and since ℘

is injective, we have ℏ = ℑ(ℏ, ϑ, ϱ). Analogously, we find that

ℑ(ϑ, ℏ, ϑ) = ϑ and ℑ(ϱ, ϑ, ℏ) = ϱ.

Thus, ℑ has a triple fixed point.

Corollary 3.1. Consider a partially ordered set (ξ,≤) and assume that there is
an E-cone metric pE on ξ such that (ξ, pE) is a complete E-cone metric space.
Consider ℘ : ξ → ξ is an ICS mapping and ℑ : ξ × ξ × ξ → ξ is such that ℑ has
the mixed monotone property. Suppose ∃ ψ ∈ φ such that
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pE
(
℘ℑ(ℏ, ϑ, ϱ), ℘ℑ(ℏ′, ϑ′, ϱ′)

)
≤ ψ

(
pE(℘ℏ, ℘ℏ′) + pE(℘ϑ, ℘ϑ′) + pE(℘ϱ, ℘ϱ′)

3

)
for any ℏ, ϑ, ϱ ∈ ξ for which ℏ ≤ ℏ′, ϑ ≥ ϑ′ and ϱ ≤ ϱ′. Suppose

(i) ℑ is continuous, or

(ii) ξ has the following property:

(a) if non-decreasing sequence ℏn → ℏ (correspondingly ϱn → ϱ), then ℏn ≤
ℏ (correspondingly ϱn ≤ ϱ) for all n,

(b) if non-increasing sequence ϑn → ϑ, then ϑn ≥ ϑ for all n.

If ∃ ℏ0, ϑ0, ϱ0 ∈ ξ such that ℏ0 ≤ ℑ(ℏ0, ϑ0, ϱ0), ϑ0 ≥ ℑ(ϑ0, ℏ0, ϑ0) and ϱ0 ≤
ℑ(ϱ), ϑ0, ℏ0), then ∃ ℏ, ϑ, ϱ ∈ ξ such that

ℑ(ℏ, ϑ, ϱ) = ℏ, ℑ(ϑ, ℏ, ϑ) = ϑ and ℑ(ϱ, ϑ, ℏ) = ϱ,

then, ℑ has a triple fixed point.
Proof. It is sufficient to say that

pE(℘ℏ, ℘ℏ′) + pE(℘ϑ, ℘ϑ′) + pE(℘ϱ, ℘ϱ′)

3
≤ max

{
pE(℘ℏ, ℘ℏ′), pE(℘ϑ, ℘ϑ′), pE(℘ϱ, ℘ϱ′)

}
.

Then, applying Theorem 3.1 so that ψ is non-decreasing.

Corollary 3.2. Consider a partially ordered set (ξ,≤) and assume that there is
an E-cone metric pE on ξ such that (ξ, pE) is a complete E-cone metric space.
Consider ℘ : ξ → ξ is an ICS mapping and ℑ : ξ × ξ × ξ → ξ is such that ℑ has
the mixed monotone property. Suppose ∃ q ∈ [0, 1) such that

pE
(
℘ℑ(ℏ, ϑ, ϱ), ℘ℑ(ℏ′, ϑ′, ϱ′)

)
≤ qmax

{
pE(℘ℏ, ℘ℏ′), pE(℘ϑ, ℘ϑ′), pE(℘ϱ, ℘ϱ′)

}
for any ℏ, ϑ, ϱ ∈ ξ for which ℏ ≤ ℏ′, ϑ ≥ ϑ′ and ϱ ≤ ϱ′. Suppose

(i) ℑ is continuous, or

(ii) ξ has the following property:

(a) if non-decreasing sequence ℏn → ℏ (Correspondingly ϱn → ϱ), then
ℏn ≤ ℏ (Correspondingly ϱn ≤ ϱ) for all n,

(b) if non-increasing sequence ϑn → ϑ, then ϑn ≥ ϑ for all n.



264 South East Asian J. of Mathematics and Mathematical Sciences

If ∃ ℏ0, ϑ0, ϱ0 ∈ ξ such that ℏ0 ≤ ℑ(ℏ0, ϑ0, ϱ0), ϑ0 ≥ ℑ(ϑ0, ℏ0, ϑ0) and ϱ0 ≤
ℑ(ϱ0, ϑ0, ℏ0), then ∃ ℏ, ϑ, ϱ ∈ ξ such that

ℑ(ℏ, ϑ, ϱ) = ℏ, ℑ(ϑ, ℏ, ϑ) = ϑ and ℑ(ϱ, ϑ, ℏ) = ϱ,

then, ℑ has a triple fixed point.
Proof. The proof is complete by taking ψ(ı) = qı in Theorem 3.1.

Corollary 3.3. Consider a partially ordered set (ξ,≤) and assume that there is
an E-cone metric pE on ξ such that (ξ, pE) is a complete E-cone metric space.
Consider ℘ : ξ → ξ is an ICS mapping and ℑ : ξ × ξ × ξ → ξ is such that ℑ has
the mixed monotone property. Suppose ∃ q ∈ [0, 1) such that

pE
(
℘ℑ(ℏ, ϑ, ϱ), ℘ℑ(ℏ′, ϑ′, ϱ′) ≤ q

3

(
pE(℘ℏ, ℘ℏ′) + pE(℘ϑ, ℘ϑ′) + pE(℘ϱ, ℘ϱ′)

)
(3.28)

for any ℏ, ϑ, ϱ, ℏ′, ϑ′, ϱ′ ∈ ξ for which ℏ ≤ ℏ′, ϑ ≥ ϑ′ and ϱ ≤ ϱ′. Suppose

(i) ℑ is continuous, or

(ii) ξ has the following property:

(a) if non-decreasing sequence ℏn → ℏ (correspondingly, ϱn → ϱ), then
ℏn ≤ ℏ (correspondingly, ϱn ≤ ϱ) for all n,

(b) if non-increasing sequence ϑn → ϑ, then ϑn ≥ ϑ for all n.

If ∃ ℏ0, ϑ0, ϱ0 ∈ ξ such that ℏ0 ≤ ℑ(ℏ0, ϑ0, ϱ0), ϑ0 ≥ ℑ(ϑ0, ℏ0, ϑ0) and ϱ0 ≤
ℑ(ϱ0, ϑ0, ℏ0), then ∃ ℏ, ϑ, ϱ ∈ ξ such that

ℑ(ℏ, ϑ, ϱ) = ℏ, ℑ(ϑ, ℏ, ϑ) = ϑ and ℑ(ϱ, ϑ, ℏ) = ϱ,

then, ℑ has a triple fixed point.
Proof. The proof is complete by taking ψ(ı) = qı in Theorem 3.1.

Remark 3.1. Consider the identity ℘ = IpEξ on ξ, in Corollary 3.3, we obtain
Berinde and Borcut’s Theorem (Theorem2.1), with i = j = k = q

3
.

To prove that the existence of triple fixed point and it is unique. Consider
a partially ordered set (ξ,≤) and for ξ × ξ × ξ, define a partial ordering as:
∀ (ℏ, ϑ, ϱ), (ℏ′, ϑ′, ϱ′) ∈ ξ × ξ × ξ

(ℏ, ϑ, ϱ) ≤ (ℏ′, ϑ′, ϱ′) ⇔ ℏ ≤ ℏ′, ϑ ≥ ϑ′ and ϱ ≤ ϱ′. (3.29)

We say that (ℏ, ϑ, ϱ) and (ℏ′, ϑ′, ϱ′) are comparable if
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(ℏ, ϑ, ϱ) ≤ (ℏ′, ϑ′, ϱ′) or (ℏ′, ϑ′, ϱ′) ≤ (ℏ, ϑ, ϱ).
Thus, (ℏ, ϑ, ϱ) is equal to (ℏ′, ϑ′, ϱ′) if and only if ℏ = ℏ′, ϑ = ϑ′ and ϱ = ϱ′.

Theorem 3.2. In addition to hypothesis of Theorem 3.1, Assume that for all
(ℏ, ϑ, ϱ), (ℏ′, ϑ′, ϱ′) ∈ ξ×ξ×ξ, there exist (u, v, w) ∈ ξ×ξ×ξ such that

(
ℑ(u, v, w),

ℑ(v, u, v),ℑ(w, v, u)
)
is comparable to

(
ℑ(ℏ, ϑ, ϱ),ℑ(ϑ, ℏ, ϑ),ℑ(ϱ, ϑ, ℏ)

)
and(

ℑ(ℏ′, ϑ′, ϱ′),ℑ(ϑ′, ℏ′, ϑ′),ℑ(ϱ′, ϑ′, ℏ′)
)
. Then ℑ has a unique triple fixed point (ℏ, ϑ, ϱ).

Proof. By Theorem 3.1, the set of triple fixed points of ℑ is not empty. Suppose,
(ℏ, ϑ, ϱ) and (ℏ′, ϑ′, ϱ′) are two triple fixed points of ℑ, that is,

ℑ(ℏ, ϑ, ϱ) = ℏ, ℑ(ℏ′, ϑ′, ϱ′) = ℏ′,

ℑ(ϑ, ℏ, ϑ) = ϑ, ℑ(ϑ′, ℏ′, ϑ′) = ϑ′,

ℑ(ϱ, ϑ, ℏ) = ϱ, ℑ(ϱ′, ϑ′, ℏ′) = ϱ′.

Now we have to show that (ℏ, ϑ, ϱ) and (ℏ′, ϑ′, ϱ′) are equal. By assumption,
∃ (u, v, w) ∈ ξ× ξ× ξ such that

(
ℑ(u, v, w),ℑ(v, u, v),ℑ(w, v, u)

)
is comparable to(

ℑ(ℏ, ϑ, ϱ),ℑ(ϑ, ℏ, ϑ),ℑ(ϱ, ϑ, ℏ)
)

and (
ℑ(ℏ′, ϑ′, ϱ′),ℑ(ϑ′, ℏ′, ϑ′),ℑ(ϱ′, ϑ′, ℏ′)

)
.

Define sequences {un}, {vn} and {wn} such that

u0 = u, v0 = v, w0 = w, and for any n ≥ 1

un = ℑ(un−1, vn−1, wn−1),

vn = ℑ(vn−1, un−1, vn−1),

wn = ℑ(wn−1, vn−1, un−1), ∀ n.
(3.30)

Moreover, set ℏ0 = ℏ, ϑ0 = ϑ, ϱ0 = ϱ and ℏ′0 = ℏ′, ϑ′
0 = ϑ′, ϱ′0 = ϱ′, and similarly

define the sequences {ℏn}, {ϑn}, {ϱn} and {ℏ′n}, {ϑ′
n}, {ϱ′n}. Then,

ℏn = ℑ(ℏ, ϑ, ϱ), ℏ′n = ℑ(ℏ′, ϑ′, ϱ′),

ϑn = ℑ(ϑ, ℏ, ϑ), ϑ′
n = ℑ(ϑ′, ℏ′, ϑ′),

ϱn = ℑ(ϱ, ϑ, ℏ), ϱ′n = ℑ(ϱ′, ϑ′, ℏ′), for all n ≥ 1.

(3.31)

Since
(
ℑ(ℏ, ϑ, ϱ),ℑ(ϑ, ℏ, ϑ),ℑ(ϱ, ϑ, ℏ)

)
= (ℏ1, ϑ1, ϱ1, ) = (ℏ, ϑ, ϱ) is comparable to(

ℑ(u, v, w),ℑ(v, u, v),ℑ(w, v, u)
)
= (u1, v1, w1),

then, it is easy to show (ℏ, ϑ, ϱ) ≥ (u1, v1, w1). Recursively, we get that
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(ℏ, ϑ, ϱ) ≥ (un, vn, wn) for all n. (3.32)

By (3.32) and (3.1), we have

pE(℘ℏ, ℘un+1) = pE
(
℘ℑ(ℏ, ϑ, ϱ), ℘ℑ(un, vn, wn)

)
≤ ψ

(
max

{
pE(℘ℏ, ℘un), pE(℘ϑ, ℘vn), pE(℘ϱ, ℘wn)

}) (3.33)

pE(℘vn+1, ℘ϑ) = pE
(
℘ℑ(vn, un, vn), ℘ℑ(ϑ, ℏ, ϑ)

)
≤ ψ

(
max

{
pE(℘un, ℘ℏ), pE(℘vn, ℘ϑ)

})
≤ ψ

(
max

{
pE(℘vn, ℘ϑ), p

E(℘un, ℘ℏ), pE(℘wn, ℘ϱ)
}) (3.34)

pE(℘ϱ, ℘wn+1) = pE
(
℘ℑ(ϱ, ϑ, ℏ), ℘ℑ(wn, vn, un)

)
≤ ψ

(
max

{
pE(℘ϱ, ℘wn), p

E(℘ϑ, ℘vn), p
E(℘ℏ, ℘un)

}) (3.35)

It follows from (3.33) to (3.35) that

max
{
pE(℘ϱ, ℘wn+1),p

E(℘ϑ, vn+1), p
E(℘ℏ, ℘un+1)

}
≤ ψ

(
max

{
pE(℘ϱ, ℘wn), p

E(℘ϑ, ℘vn), p
E(℘ℏ, ℘un)

})
.

Thus, for each n ≥ 1,

max
{
pE(℘ϱ, ℘wn),p

E(℘ϑ, ℘vn), p
E(℘ℏ, ℘un)

}
≤ ψn

(
max

{
pE(℘ϱ, ℘w0), p

E(℘ϑ, ℘v0), p
E(℘ℏ, ℘u0)

})
.
(3.36)

Since ψ(ı) < ı and lim
ȷ→ı+

ψ(ȷ) < ı imply lim
n→+∞

ψn(ı) = 0 for each ı > 0.

Therefore, from (3.36),

lim
n→+∞

max
{
pE(℘ϱ, ℘wn), p

E(℘ϑ, ℘vn), p
E(℘ℏ, ℘un)

}
= 0.

Consequently, that

lim
n→+∞

pE(℘ℏ, ℘un) = 0, lim
n→+∞

pE(℘ϑ, ℘vn) = 0, lim
n→+∞

pE(℘ϱ, ℘wn) = 0. (3.37)

Similarly, we show that

lim
n→+∞

pE(℘ℏ′, ℘un) = 0, lim
n→+∞

pE(℘ϑ′, ℘vn) = 0, lim
n→+∞

pE(℘ϱ′, ℘wn) = 0. (3.38)
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Combining (3.37) and (3.28) gives that (℘ℏ, ℘ϑ, ℘ϱ) and (℘ℏ′, ℘ϑ′, ℘ϱ′) are equal.
Since ℘ is injective, we have ℏ = ℏ′, ϑ = ϑ′ and ϱ = ϱ′.

4. Conclusion

In conclusion, this study has successfully extended the fixed-point theory to
tripled fixed points in complete E-cone metric spaces, offering a broader framework
for solving nonlinear problems. By establishing new contractive conditions, we
demonstrated the existence and uniqueness of tripled fixed points under specific
mappings. These results significantly generalize previous findings in traditional
metric and cone metric spaces, providing a versatile tool for analyzing complex
systems in various fields, including dynamic systems, optimization, and differential
equations. The insights gained through this research open new pathways for further
exploration in the study of fixed points in generalized spaces and their potential
applications in mathematical modeling and applied sciences.
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